Field Testing and Troubleshooting of PON LAN Networks.

Best practices and initial guidance from IEC 61280-4-3

Christian Schillab
Marketing Engineer EMEA/ FlukeNetworks
Christian.Schillab@FlukeNetworks.com

Agenda

- PON basics
 - Wavelengths
 - Architecture
 - Splitters
- Fiber Optic Testing Compared: Data Center, Telco, PON
- Guidelines for Certification
- Troubleshooting
 - OTDR
 - Power Meter
- Document Results

'basic' PON architecture

UP-Stream

"Flavors" of Passive Optical Networks

- E-PON and G-PON most common today
- 10G or XG-PON, NG-PON, NG-PON2
- TBD-PON
- FTTx
- PON-LAN
- We don't care what you put on the road we want to make sure the road is in good shape to support today's applications
 - Loss Budgets, Distances, Reflectance limits may be tighter with future versions

Basic PON LAN Layout

Fiber Concentration Point (FC/FCP)

Fiber Distribution Terminal (FDT)

Fiber Distribution Hub (FDH)
DataCenter/MDF Single Administration
Point

Multiple Wavelengths λ One Fiber

OLT – Optical Line Terminal

ONU – Optical Network Unit (ONT – Optical Network Terminal)

Multiple Wavelengths λ One Fiber - Split

OLT – Optical Line Terminal

ONU – Optical Network Unit (ONT – Optical Network Terminal)

Multiple Wavelengths λ One Fiber – Redundancy

As you increase the split, you attenuate the light that is coming out of a splitter

- A 1 X 2 = 3.5 dB of loss
- 1 X 4 = 7 dB of loss
- 1 X 8 = 10.5 dB of loss

Loss Budget per Split per TIA-568 Annex D

Maximum permitted loss 3.9 dB

Test of PON Networks

Fiber Testing Applications Compared Data Center

- Multiple connections supporting
 - "Zoned" Data Centers
 - Spine Leaf Architecture
 - Ultra Low Loss components
- Short over all distance
- Very low loss budgets
 - Even lower budget per segment ... often < 1dB / segment</p>

Fiber Testing Applications Compared Data Center Testing

- Testing is typically performed per segment
 - Testing Errors are often systematic and will accumulate for the final channel

Best Practices:

- Basic/Tier-1 Testing with a LSPM
 - 1 Jumper Reference
 - EF Launch Conditions for Multi Mode
 - Use of TRC (Test Reference Cords)
- Extended/Tier-2 Testing an OTDR is complimentary
 - More detailed but less accurate
 - Bi-Directional testing for evaluation of components is essential
 - Use of Launch & Tail Fiber essential

Fiber Testing compared

Application	Distance	Overall Loss dominate by	Typical provisioning	Use of TRCs	Bi-Di Testing	Use Launch & Tail Fiber
Data Center	short	Connections	Segments	*	* 1)	*
Telco (Long Haul)	long	Fiber	End To End	0	0	0
PONs	medium	Splitter	End To End	0	n/a	0

Note 1) Essential for Pass/Fail on component level

O...Not Essential

O...Beneficial

• ...Recommended

★...Essential

Guidance for Testing

- Manufacturers from PON-Lan Systems
- Test EquipmentManufacturers
- IEC 61280-4-3 (Committee Draft)

COMMSCOPE

Guidance for Testing will come from IEC 61280-4-3

<u>Title:</u>

FIBRE-OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES –

Part 3: Installed passive optical networks – Attenuation and optical return loss measurements

Status:

First Committee Draft

IEC 61280-4-3 Testing Methods

Four Methods Defined

- LSPM One Cord Method
- 2. OTDR In Band (...Out Of Service)
- 3. OTDR Out Of Band (... In Service)
- Equipment Source & PON PM

RTM

Recommended Test
Method

ATM

Alternative Test Method

IEC 61280-4-3 Testing Method

(1) LSPM - One Cord Method

Single fiber testing – setting a reference

- Connect the MAIN and SOURCE units together
 - One Jumper Reference
 - Must have input port that is the same as the connector to be tested

Single fiber testing – setting a reference

- After the reference is set, verify the condition of the other Test Reference cord
- Save this in your test results!

Single fiber testing – setting a reference

Connect to the link you wish to test

Sample Test Results

Cable ID: HGI ROOM 204

Date / Time: 12/29/2017 09:28:09 AM Cable Type: OS2 Singlemode

n = 1.4670 (1310 nm) n = 1.4680 (1550 nm) **Test Summary: PASS**

Backscatter Coefficient: -79.5dB (1310 nm) Backscatter Coefficient: -82.0dB (1550 nm)

Loss (R->M)
PASS

Date / Time: 12/29/2017 09:28:09 AM Test Limit: *4 PORT & 8 PORT*

Operator: Jim

certifiber pro (17455007 v5.3 build 20171229

Module: CFP-QUAD(2427616)

	1310 nm	1550 nm
Result	PASS	PASS
Loss (dB)	18.34	17.47
Limit (dB)	20.50	20.50
Margin (dB)	2.16	3.03
Reference (dBm)	-2.66	-2.73

Connector Type: LC Patch Length1 (m): 2.0

Reference Date: 12/29/2017 09:08:10 AM

1 Jumper

IEC 61280-4-3 Testing Method

(2) OTDR (In-Band ... Out Of Service)

Upstream OTDR Testing

Upstream OTDR Testing

Upstream OTDR Testing

Downstream Testing

Downstream Testing

Length

Downstream Testing

Length

Downstream Testing: Is it feasible?

Downstream Testing: Testing Splitter (1) Is it feasible?

Downstream Testing: Testing Splitter (2) Is it feasible?

Downstream Testing: Testing Splitter (3) Is it feasible?

Downstream Testing: Testing Splitter Is it feasible?

Only in a few exceptions

OTDRs: Can help with the interpretation

IEC 61280-4-3 Testing Method

(3) OTDR (In-Band ... Out Of Service)

Troubleshooting a live network with an OTDR

- Unplug from OLT (and run)
- Unused wavelength 1625 nm or 1650 nm

Filtered test configuration for a PO-LAN

OTDR

- When troubleshooting a connectivity issue you need to be able to connect into a live system with an OTDR to troubleshoot without disturbing the system and without the POLAN signals interfering with the OTDRs measurements.
 - A 1625nm Live Fiber Filter allows the OTDR to use an out of band 1625nm test wavelength to meet this purpose.
 - 1625nm will not interfere with the active POLAN signals
 - The filter blocks the 1310nm, 1490nm and 1550nm wavelengths from entering the OTDR port, preventing them from interfering with the measurement

IEC 61280-4-3 **Testing Method**

(4) Equipment Source & PON PM

Example of PON to the desk

t switch – in hple – to copper vity to phone, p, local WAP,

In Conclusion

- PO-LAN is a valid alternative to pure copper networks
- Many niche markets are appearing
 - Hospitals
 - Hotels
 - Government
- Follow best practices for loss testing
 - One Jumper reference, accurate loss budget
- OTDRs can be used for Troubleshooting
 - Clean the fibers before you connect them!

Thank You for Your Attention!

Questions?

END

