Is transforming multimode fibers into singlemode fibers possible?

How to use innovative optical technology to upgrade aging cabling infrastructure?

LENGLE Kévin, PhD Product Line Manager, Cailabs

BICSI Mainland Europe – Milan – 08 November 2018

Outline

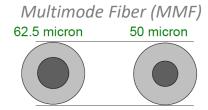
- Increased capacity needs in Local Area Networks
- Modal dispersion is limiting capacity on multimode fibers
- How to overcome this issue?
- Multi-Plane Light Conversion (MPLC) technology
- Multimode fiber plant upgrade use cases

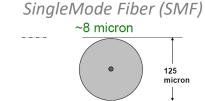
Increased bandwidth capacity needs

- WiFi Distributed Antenna Systems
- VoIP, video-conférence
- CCTV (video surveillance)
- Shared storage
- Professionnal software & apps
- Real time apps
- Virtualization, cloud computing
- Connected objects, BYOD, IoT
- Smart building, ...

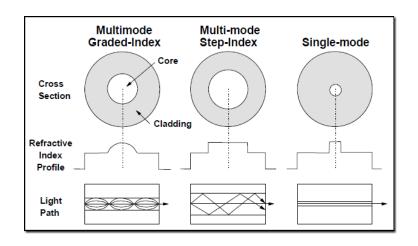
Bandwidth-intensive applications + latency-aware traffic types

LAN cabling infrastructures need to support ever growing bit rates


Optical fiber reminder

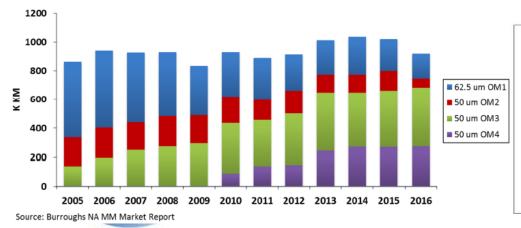

Low linear loss, low footprint, EM insensitivity

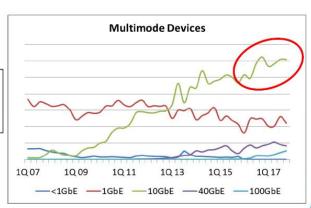
Outer Jacket Coating Core


Differentiation of optical fibers according to:

- Geometrical properties
- Index profile (graded index or step index)

MMFs cannot cope with the capacity needs


1 Mkm MMF deployed in LANs and DC every year



35% limited to 1 Gb/s or 100 Mb/s max

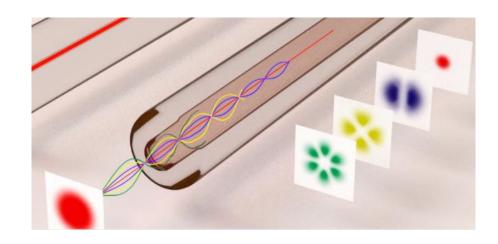
80% equipment shipped requires 10+ Gb/s

MMF everywhere but bandwidth limited

Limited bandwidth = Maximum reach decreases when bit rate increase

Maximum reach with MM transceivers (850 nm)	100 Mb/s	1 Gb/s	10 Gb/s
OM1 (62.5/125 μm)	2000 m	300 m	35 m
OM2 (50/125 μm)	2000 m	550 m	80 m
OM3 (50/125 μm)	2000 m	600 m	300 m
OM4 (50/125 μm	2000 m	600 m	500 m

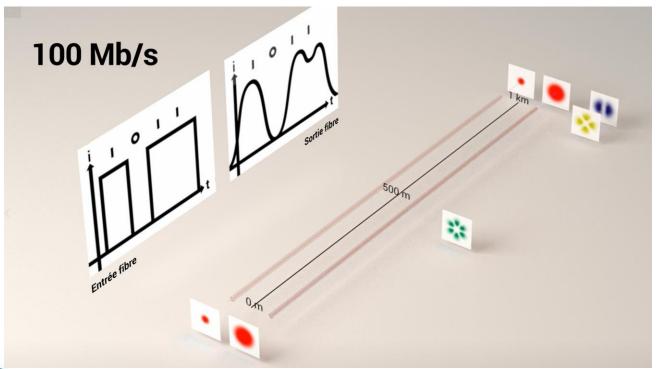
The cause of this limitation: modal dispersion



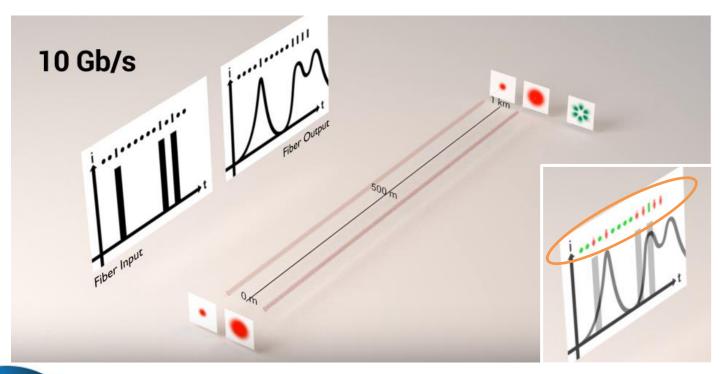
Modal dispersion

Distorsion mechanism occuring in multimode fibers

Different modal speeds


Distorsion of optical pulse during propagation

Modal dispersion at 100 Mb/s : minimal impact



Pulse spreading without impact on transmission quality

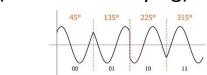
Modal dispersion at 10 Gb/s: Poor transmission quality

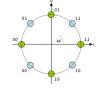
→ Degraded bit error rate

How to increase bit rates over MMF?

Advanced modulation format to increase spectral efficiency

PAMx (Pulse-Amplitude Modulation)


PAM4 for 400 GbE



Phase

Polarization

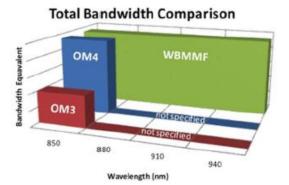
xPSK (Phase Shift Keying)

PDM (Polarisation Division Multiplexing)

Coherent transmissions used for long distances

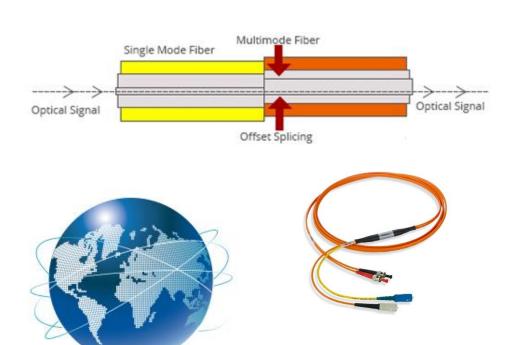
Expensive hardware needed for all three solutions

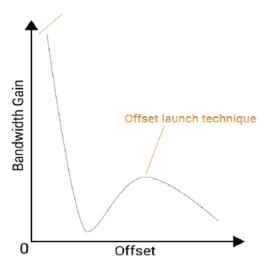
→ Not compatible with LAN economic models



Wavelength Division Multiplexing (WDM)

- Enables one to create several channels over one fiber (Channel capacity is still limited by the MMF max capacity)
- Additionnal costs for Mux/Demux and transceivers
 - Ralely used for MMF LAN upgrade
- Sometimes integrated into transceivers: 10GBASE-LX4 (4x2,5Gb/s) ou 100GBASE-LR4 (4x25Gb/s)
- SWDM over OM5 (Wide Band MMF)
 - New datacenter oriented rather than LAN backbone





LRM Transceivers (IEEE 802.3aq) + mode conditioning patchcord

- offset launch technique: Less excited modes reducing the impact of modal dispersion
- signal processing: electronic dispersion compensation (EDC)
- At 10 Gb/s will not work for OM1 / OM2 fibers longer than 220 m
- Not garanteed to work on all infrastructures

Theoritical MMF bandwidth gain according to launching conditions

Currently the most common solution is to replace the existing MMF by SMF.

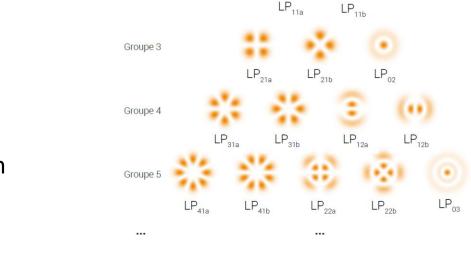
Pros:

- Possibility to install latest generation fibers
- Increase of bandwidth over long distances

Cons:

- Audit required (availability and condition of the cable ducts)
- Long and complex installation
- Civil engineering work
- Expensive (several tens €/m if complexity)
- Etc.

➤ Is there **another alternative** to address the problem of bandwidth limitation in MMF LANs??



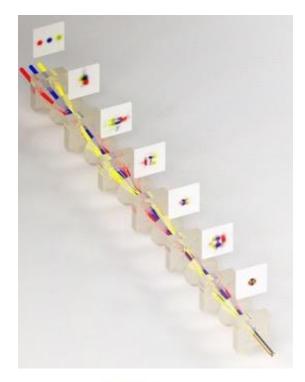
Another dimension: the shape of the light

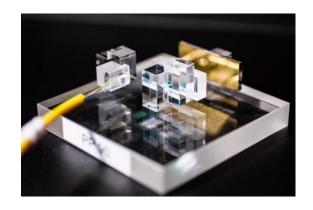
It is possible to avoid modal dispersion by coupling and detecting precisely the modes within the MMF.

Several solutions to increase bit rates:

- Excite only one mode to have a singlemode transmission
- Excite multiple modes and perform modal multiplexing

Groupe 1

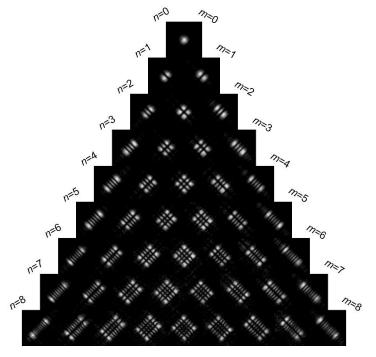

Groupe 2


Innovative technology

MPLC : Multi-Plane Light Conversion

Patent Light shaping technology

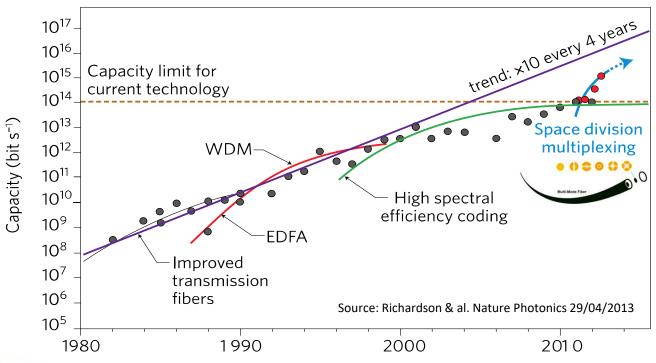
Passive optical process with low loss


Multiple light shape through **reflections on textured surfaces**

Addressing of all the MMF modes

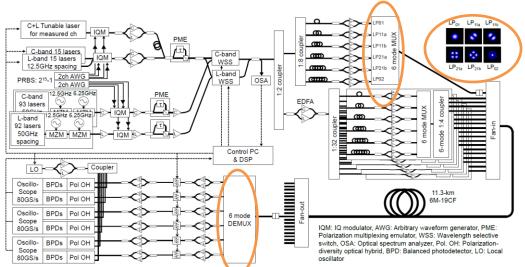
Today, MPCL is able to address **45 modes of an multimode fiber** New opportunity for optical communications

Space Division Multiplexing (SDM)



Limit at 100 Tb/s per fiber with current technologies

SDM opens new perspectives


New horizons

A world record by PDD: : MPLC technology has allowed to transmit 10 Petabit/s (10 million Gb/s!) over a single fiber

- > Equivalent to 30 times of the current worldwide internet bit rate
- > Equivalent to 500 million of europeans simultaneously watching Netflix in 4k

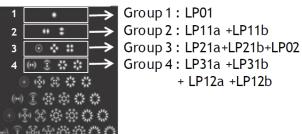
Lab experience over non-standard MMF, combining SDM through MPLC, WDM and advanced modulation format

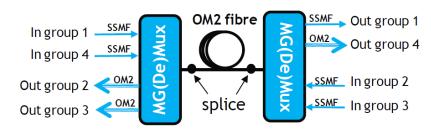
D.Soma et al., KDDI Research, PDP, ECOC 2017

Fig. 3: Experimental setup for 10.16 peta bit/s SDM/WDM transmission

High bit rates over legacy MMF

200 Gb/s over 4.4km of OM2


NOKIA Bell Labs

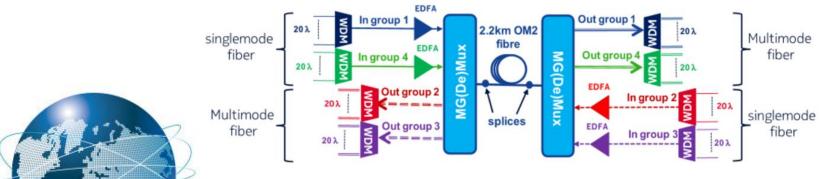

Modal multiplexing using MPLC (4 mode groups)

50Gb/s PAM4 over each modal channel

Direct detection

OM2 fibre mode patterns

C. Simmoneau et al., OFC 2016


High bit rates over legacy MMF

14,5 Tb/s over 2.2km of OM2 NOKIA Bell Labs

Combining MPLC + WDM

4 mode groups x 20λ per group ie 80 channels (each channel at 180 Gb/s DMT)

➤ Highest data rate ever transmitted over an optical multimode fiber with intensity modulation and direct detection

K. Benyahya et al., ECOC 2017, OFC 2017

Solutions to upgrade LAN cabling infrastructure

MPLC technology used in products range to exploit the full potential of multimode fiber by removing bandwidth limitation

Increased capacity

High capacity channels (10+ Gb/s), for MMF up to 10km
Several ranges depending on the network topology (point to point, star, POL)
WDM compatible

Compatible with standard fibers and transceivers

Any type of multi-mode fiber 62.5/125 μm or 50/125 μm
Any type of single-mode transceiver

Transparent to communication protocol (ethernet, fiber-channel...)

Reduced cost

3 times less expensive than a fiber roll-out; **up to 10 times** less expensive if complexities exist

Passive system: no additional cost of consumption, cooling, monitoring Installation takes **only few hours**

Unique technology for a global problem

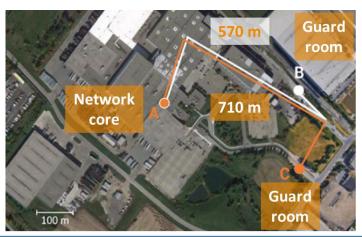
The problem of MMF bandwidth limitation is found on various typologies and topologies of networks

- University / School group
- Hospital
- Factory
- Military sites
- Shopping center

- Ski resort
- Urban community
- Amusement park
- Airport
- Sports complex
- Museum
- •

Let's analyze some use cases

Smart factory


Auto factory in Canada, **OM1 MMF** (570 to 710m), **limited at 100 Mb/s** Capacity needed 10 Gb/s over several links

- New CCTV system
- « smart factory » various equipment controlled by WiFi

No free cable conduits under buildings and parkings

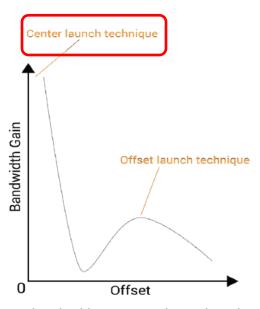
- > Can not block site entries for civil engineering (24/24-7/7 site)
- ✓ MPLC technology at the network core
 - **10 Gb/s over each link**, with an easy upgrade path to 40-100 Gb/s
 - **4 hours of installation** vs days for fiber roll out

Transforming up to 6 MMF pairs into 6 SMF pairs

Upgrades the network with a single component

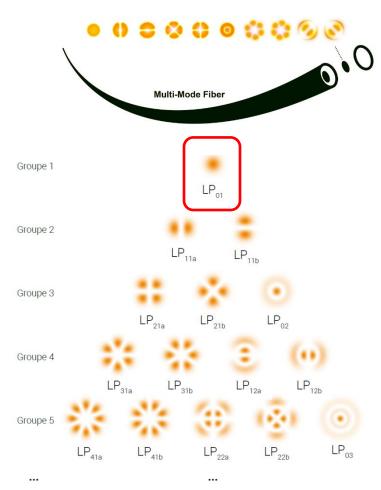
10 Gb/s over all branches of a LAN (instead of 1Gb/s or 100Mb/s)

Up to 6 duplex links of 800 m*

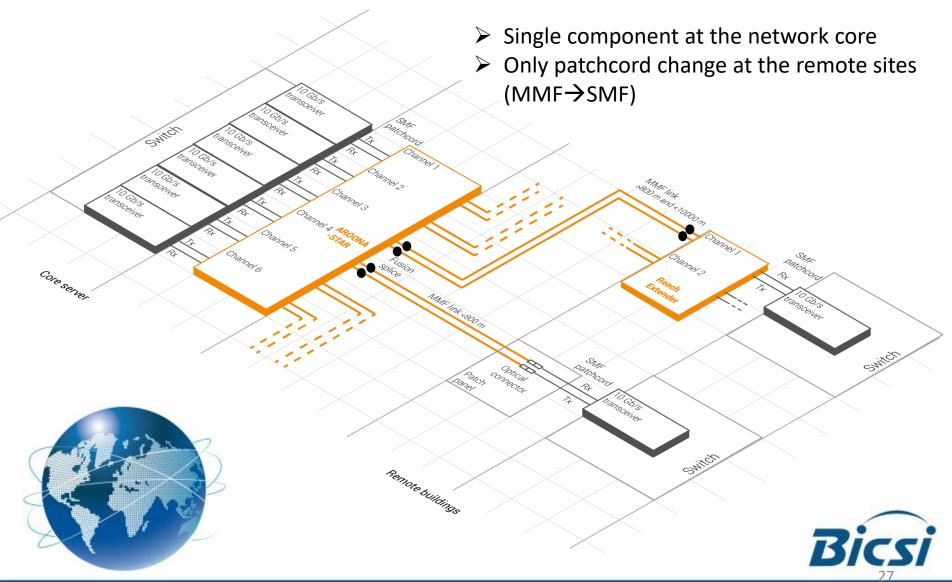

WDM compatible

AROONA-STAR only at the core of the network

No installation required at remote sites*



Transforming MMF into SMF


Theoritical MMF bandwidth gain according to launching conditions

Transforming up to 6 MMF pairs into 6 SMF pairs

Better connectivity at school

School district in Arkansas, US

Severals OM1 links **between 130 et 530 m**, limited at 1 Gb/s, star topology Innovative program « **one student, one computer** »

10Gb/s needed for DAS (Distributed Antenna System)

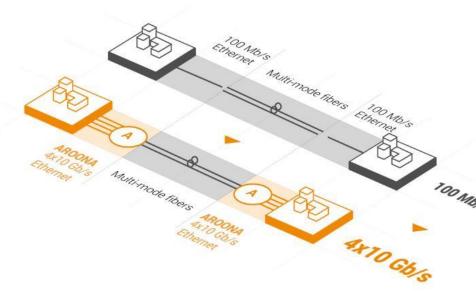
- Infrastructure upgraded in 1 day financial savings
- 5 additionnal equipements ordered to upgrade the entire network

Futur proofing a factory network

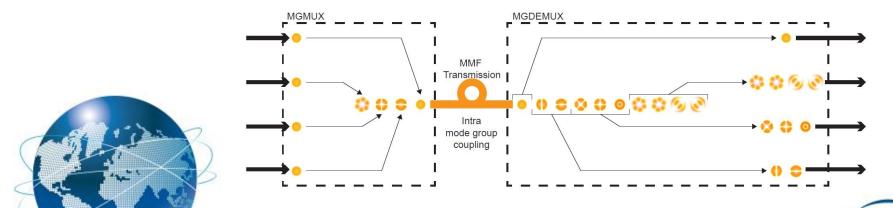
Cabling infrastructure in OM1 only – 12km² campus

10 Gb/s needed (CCTV, specific applications,...)

Only few MMF available: wish to multiply links


No free cable conduits – risky civil engineering on a steel industry **SEVESO site**

- MPLC solution to obtain 4
 channels at 10 Gb/s over a
 2800m OM1 single pair
- Upgrade done in ½ day
- Other project soon to create an MMF 10 Gb/s optical ring over the entire campus


Transforming 1 MMF pair into 4 SMF pairs

Up to 4 high bit rates independent channels over 1 MMF pair

Same wavelength

Modes are muxed / demuxed on each side of the link using MPLC technology

Connected ski resort

OM1 MMF (**3.3km – 3200m high**), limited at 50 Mb/s

MMF initialy dedicated to ski lift sensor monitoring

High capacity needed for smart ski resort

No cable conduits available – Highly complex fiber roll out in montain context

MPLC solution to deal with this issue:

2x10 Gb/s over OM1 MMF

1 day of installation vs weeks for civil engineering for cable deployment

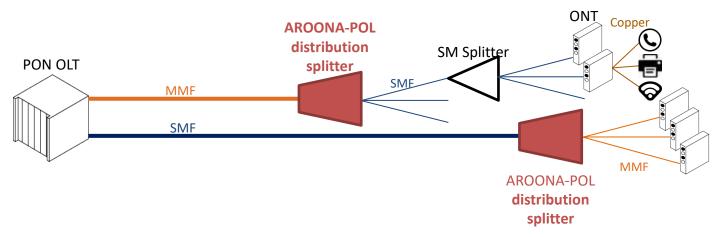
Passive Optical LAN over MMF

POL is the future of LAN implementation...

Passive Optical LAN is an attractive, long-term LAN architecture that **outperforms traditional Ethernet LAN in capacity**, installation and operational cost, energy savings, infrastructure footprint and security.

It benefits from the Gigabit Passive Optical Network (GPON) technology for access networks and brings fiber-speed connections to the desktop.

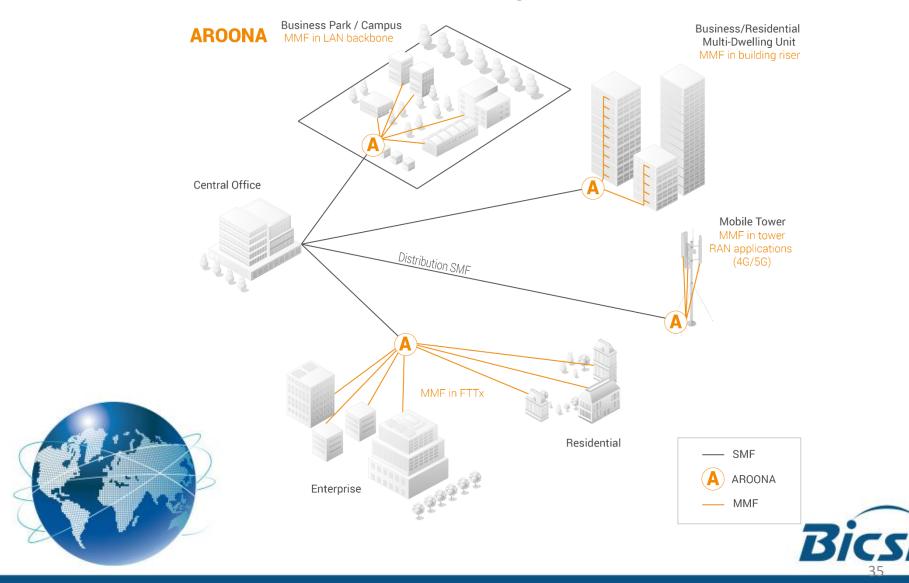
... but backbone/vertical singlemode fiber recabling may be deterrent to POL adoption



Presentation on this topic: 15:20 - 16:00 **Slobodan Zlatković – APOLAN Consortium**

Retrofitting old infrastructure for POL

MPLC technology facilitates POL adoption over MMF cabling infrastructure


Simultaneously manages the spatial modes in upstream and downstream operation between singlemode fibers and multimode fibers.

SM to MM modal adaptation use cases

Transforming MMF into SMF, it is possible!

Local Area Network fiber plant mainly with multimode fiber

MMF = bandwidth limitation

MPLC (Multi-Plane Light Conversion)

Light shaping innovative technology to harness the full potential of MMF

Overcome modal dispersion to increase MMF capacity

A full range of passive equipment as **an alternative to fiber cabling** to meet ever growing bandwidth demand

Everywhere you find multimode fiber, MPLC technology by Cailabs brings you solutions

Grazie per l'attenzione. Non esitate a contattarmi se volete maggiori informazioni o demo

> kevin@cailabs.com

More information on www.cailabs.com

